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ABSTRACT

With the increasing awareness towards protecting environment,
people are paying more attention to the electric vehicles (EVs). Ac-
companying the rapid growing number of EVs, challenges raise
at the same time about how to place EV chargers (EVC), within
a city, to satisfy multiple types of charging demand. To provide a
better EVC station deployment plan to benefit the whole society,
we propose a problem called Social-Aware Optimal Electric Vehicle

Charger Deployment (SOCD) on road network. The SOCD problem
is hard and different from existing work in three aspects, 1) we
assume that the charging demand should be satisfied not only in
urban areas but also in relatively rural areas; 2) our work is the first
one that considers an EVC station should have multiple types of
charging plugs, which is more reasonable in real world; 3) different
from the regional deployment solutions in previous literature, our
SOCD directly works on a real road network and EVC stations are
placed at appropriate POIs laying on the road network. We show
that the SOCD problem is NP-hard. To deal with the hardness, we
design two heuristic algorithms whose efficiency and effectiveness
can be experimentally demonstrated. Furthermore, we investigate
the incremental case, that is, given an existing EVC station deploy-
ment plan and extra more budget, we need to decide where and
how many to place more chargers. Finally, we conduct extensive
experiments on real road network of Shanghai to demonstrate both
effectiveness and efficiency of our algorithms.
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1 INTRODUCTION

Nowadays, the transportation sector accounts for a large propor-
tion of total energy consumption. And the rapid growth of energy
demand, especially fossil fuel, will lead to massive CO2 emission
[2]. As one of the solutions to alleviate the environmental pressure,
electric vehicles (EVs) have been planned to replace or partially
replace fossil fuel vehicles, and government incentives to increase
adoptions were also introduced, such as the ones in the United
States [22] and China [1]. However, as the predictable increase of
total number of EVs, the explosive demand of accessing EV chargers
(EVCs) in public zones becomes a new challenge at the same time.
A survey [4] points out that, although the number of public EVC
stations has grown from less than 1000 in April 2011 to 4153 in
August 2012, it is still limited compared to the 160,000 gasoline sta-
tions in the US (US Department of Energy, 2012). Moreover, [4] also
indicates that anxiety caused by too few public chargers and long
charging time is one of the deterrents to intent for purchasing an
EV. Thus, appropriate deployment of EVCs becomes a fundamental
problem for the popularization of the electric vehicles.

Figure 1: EVC distribution in Shenzhen.

In this paper, to nicely answer the optimal EVC deployment prob-
lem considering cost from a social scope, we formulate the problem
called Social-Aware Optimal Electric Vehicle Charger Deployment

(SOCD) on a large-scale road network. Based on the road network
information of a city, analysis over historical trajectory data and
other relevant features, SOCD provides an EVC deployment plan
such that the total social cost is minimized and the whole city’s
charging demand is satisfied. Note that, the deployment plan in-
cludes the location we should place an EVC station and the number
of EVCs need to be installed to satisfy the nearby EVs’ demand. The
social cost contains two parts: (1) the investment from government
and EVC providers, and (2) themeasurement of the total anxiety and
discomfort of EVC users among the whole society. Recently, EVC
positioning related problems have been investigated by research
community from interdisciplinary backgrounds. However, our work
is totally different from the previous works [10, 13, 15, 18, 19, 21, 27].
The differences are basically threefold.
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Table 1: Summary of the charger plugs and charging power.

Charging Plug Power Charging Duration

Type-2(1) 7.3 kW 8h14min

Type-2(2) 16.5 kW 3h8min
CHAdeMO 50 kW 1h40min

Tesla Supercharger 120 kW 57min

1. Satisfying Demand in Rural Areas. First of all, we study
the problem of placing public EVCs instead of private EVCs, which
can only be accessed by their owners. In addition, we require the
whole road network of a city can be covered by the service region
of all EVC stations. Most works like [18, 19] return a deployment
plan such that regional charging demand is satisfied, where the
charging demand is estimated via historical EV driving trajectory
data. However, such strategy will lead to 0 EVC distributed in the
region whose charging demand is very low, which does no good
for popularizing EV among the whole city. To illustrate this point,
Figure 1 shows the current EVC distribution of Shenzhen, one of
the biggest city of China. EVCs are mainly distributed in downtown
areas such as Luohu; however, for the rural area such as Fenggang
and Pinghu, there is no any EVC station, which prevents EV driving
into these areas. Although the charging demand in rural areas is low,
it is still an important detrimental factor for potential EV drivers.

2. Multiple Types of Charger Plug. Besides, previous works
have not taken plug types of a charger into consideration and they
assume the charging capability is identical among all the EVCs.
However, we find that plug types do influence the EVC deployment
result significantly. Table 1 1 lists some existing plug types.

We can find that the charging capability (charging power) varies
much from different plug types and also the cost of installing dif-
ferent types of chargers will be different. It is obviously to see that,
chargers with low-power plugs should not be installed in some
areas with high parking fee, such as shopping centers and superior
office buildings. On the other hand, these trickle chargers are suit-
able for somewhere long-time parking is allowed, such as airport
parking and other long-term parking lots for hotels or apartment.

3. Solution Granularity. Most existing works on placing EVC
returns regional result [18, 19], that is to say, these algorithms deter-
mine the necessary number of EVC within each region or grid cell
partitioned in advance. Though some other studies like [13] work
on road network, they use a simplified or highly extracted version,
which loses much information of points of interest (POIs). Instead,
we allow EVC station can be placed nearby any POI among a city.
Here, any means that, given a road network, any node, representing
a POI in a city, can be potential location of a EVC station. The reason
of such setting is that, although we can know how many chargers
are needed within some region, we must further determine where
and how many we should place these chargers. For example, there
might be some green land, a lake, a shopping mall and a large hotel.
It is more reasonable to place EVC station at the latter two places
rather than first two since shopping mall and hotel are POIs to EV
driver, whereas green land and lake are not.

Contribution. We list our main contribution as follows.

• Wedefine the Social-Aware Optimal Electronic Vehicle Charger

Deployment (SOCD) problem on road network. SOCD firstly
considers the social benefit of rural areas, themultiple charger
plug types and the influence of POIs on the road network.

1The data is crawled from https://leccy.net.

Table 2: Summary of notations.

Notation Description

G a road network with POIs
S a multi-plug EVC charging station

xi the number of chargers with i th type plug of charging station S
R(S ), rS the influence region of S and its radius
C(S ) total charging capacity of EVC station S
P an EVC station deployment plan

w (p) the rural degree of location p
f (S ) the total installment fee of EVC station S
D(S ) the total number of EVs choosing station S for charging
W (S ) the expected waiting time at EVC station S
Benefit the total social benefit of a given deployment plan P
Cost the total social cost of a given deployment plan P
Costt the total travel cost of a given deployment plan P
Costb the total boring time of a given deployment plan P

Social (P ) the social influence (score) of a given deployment plan P

• We prove our SOCD problem is NP-hard, and then we devise
a greedy-based heuristic, togetherwith several optimizations,
to solve the complex non-linear optimizing problem.

• Based on the proposed solution for SOCD problem, we fur-
ther investigate the extensibility of our algorithms on the
incremental case, that is, given an existing EVC deployment
and more budget, how to place more chargers in a way con-
tributes to the whole society as much as possible.

The rest of our paper is organized as follows. In Section 2, we
define the SOCD problem and analyze its hardness. In Section
3, we present the solutions to the SOCD problem, including the
Bounding&Optimizing framework (Section 3.2), the more efficient
algorithm Region Partition Based Deployment (Section 3.3), and the
extension of these algorithms to the incremental scenario (Section
3.4). Finally, we conduct extensive experiments in Section 4, review
related works in Section 5 and conclude in Section 6.

2 PRELIMINARIES

In this section, we formally introduce our Social-Aware Optimal
Electronic Vehicle Charger Deployment (SOCD) problem on road
network, which aims at determining an optimal EVC deployment
plan such that the total social score is maximized. For quick refer-
ence, all the notations used in this paper are listed in Table 2.

2.1 EVC Station on Road Network

Since the EVC stations are usually distributed on the road network,
we give the formal definition of the road network of a city as follows.

Definition 1: Road Network. A road network of a city is
defined as a quadrupleG = (V ,E,τ ,δ ), where V is the set of points
of interests (POIs), E is the set of roads bridging nodes in V , τ :
V → R2 is the function mapping vertices in V to 2D spatial space.
For a given edge e = (u,v) ∈ E, δ (e) can be regarded as the travel
cost from the start point u to the end point v of road e .

In some applications, the travel cost is modeled by driving time
instead of road distance [23, 25]. However, the actual driving time
is more complicated as it considers the real-time traffic condition.
Since our main purpose is not to model the travel cost on road
network, we use road distance as the travel cost for simplicity.

Then, we give the definition of Multi-plug EVC Station located
on the road network, which has been discussed in our introduction.

Definition 2: Multi-plug EVC Station. Given a road network
G = (V ,E,τ ,δ ), an EVC station with multiple charger plugs S has
two attributes, S .pos and S .x , where S .pos is the location of station
S and possible values of S .pos are in {τ (v)|v ∈ V }, and S .x =
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{x
(1)
S
,x

(2)
S
, · · · ,x

(k )
S

} is an array of size k denoting the numbers

of k types of chargers, where x (i)
S

is the number of chargers with

ith type plug. Besides, for a station S , the following constraint

should be satisfied,
∑k
i=1 x

(i)
S

≤ K , which means the total number
of chargers installed at EVC station S should be bounded by K due
to the limitation of space.

Definition 3: Installment Fee. Given an EVC station, the cost
of installment fee, which is denoted by f (S), is calculated as follows,

f (S) = estate_price(S) +
k∑
i=1

x
(i)
S

fi ,

where estate_price(S) is the cost of deploying an EVC station at
location S .pos and fi is the fee of installing one charger with ith

type plug.
To measure the influence of setting a new EVC station S , we

introduce the concept of Influence Region.
Definition 4: Influence Region. Given an EVC station, its in-

fluence region R(S) is a circle centering at S .pos with radius rS ,
where rS is defined as

rS = rmax ·
���

2

1 + exp(−
∑k
i=1 x

(i)
S
pi )

− 1
��	 , (1)

where rmax is the maximum influential radius, and pi is the charg-

ing power of ith type charger plug and thus, C(S) =
∑k
i=1 x

(i)
S
pi is

the total charging capacity of EVC station S .
Note that, when the total charging capability of a station Sv ,

C(S) =
∑k
i=1 xipi , increases from 0 to +∞, the radius of S’s influ-

ence region rS increases from 0 to rmax , which is reasonable in
real applications since the maximum influence region should be
bounded by some distance constraint. That is to say, even an EVC
station may have a very large charging capacity, it still cannot
attract users far away from it (e.g., 50km).

Next, we give the definition of EVC Deployment Plan.
Definition 5: EVC Deployment Plan. Given a road network

G = (V ,E,τ ,δ ), an EVC deployment plan is a set of Multi-plug EVC
Stations. We use symbol P = {S1, S2, · · · , Sm } to denote it.

2.2 Social Influence of EVC Deployment

In this subsection, suppose that we are given an EVC deployment
plan P , we discuss the social influence caused by this plan, which is
the core optimization goal of our problem. We divide the social in-
fluence into two main parts, Social Benefit and Social Cost, denoted
by Benefit and Cost respectively.

Before formally introducing the definition of Benefit andCost , we
first need to estimate the charging demand dv of each node in road
network. Here, the semantics of dv is the number of EVs located
near τ (v) that need to be refilled within a unit time interval (e.g., 2
hours). To get dv , we collect historical trajectory data of various
types of cars. The details of how to estimate dv via trajectory data
are discussed in the Section 4.

2.2.1 Social Benefit. Given an EVC deployment plan P , the benefit
(i.e., positive social influence) gained from placing chargers as plan
P is the coverage of EVC stations’ influence regions over the whole
city, including both urban and rural areas. Formally, we have the
definition of social benefit as follows.

Ordinary Node of 
Road Network

ECV Station

v1

v2

v4

v3

v5 v6

v7

s1 s2

Figure 2: An example of calculation of social benefit.

Definition 6: Social Benefit. Given an EVC deployment plan
P , for any S ∈ P , the corresponding influence region R(S) and the
set of nodes covered by R(S) can be calculated respectively. The
total social benefit, denoted by Benefit, can be calculated as:

Benefit(P) =
∑
S ∈P

(
2

1 + exp{−w(S .pos)I1(S)}
− 1

)
, (2)

where I1(S) is the number of nodes in the road network covered by
R(S). Besides,w(S .pos) is a weight parameter to measure the “rural
degree” of the location of S . The higher the value ofw(S .pos), the
more rural of the location of S .

Figure 2 illustrates a toy example, where S1 and S2 are two newly
installed EVC stations in the deployment plan. The two circles in the
figure are the corresponding influence regions of S1 and S2. Suppose
that, w(S1.pos) = 2 and w(S2.pos) = 1. Thus, according to Eq. (2)
the total social benefit of such deployment plan can be calculated
as: (2/(1 + exp(−2 × 7)) − 1) + (2/(1 + exp(−1 × 5)) − 1) = 1.987.

2.2.2 Social Cost. Meanwhile, an EVC deployment plan also re-
quires some cost to implement, which we call “Social Cost”. Similar
to the assumptions in works [18, 19, 27], we take travel cost and
the boring time elapse of waiting for EV getting fully charged into
consideration when we calculate the total social cost.

Travel cost Costt . The first factor we consider that contributes
to the social cost is the total travel cost, which is defined as the
total travel distance from all EVs having charging demand to their
nearest EVC stations within a time period ΔT . Given a road network
G, an EVC deployment plan P and charging demand dv for every
node in G, we can calculate the travel cost Costt as follows,

Costt (P) =
∑
S ∈P

∑
v ∈V

dvdist(v, S) · y(v, S), (3)

where dist(v, S) is the length of the shortest path from v to S on
road network, andy(v, S) is an indicator function. If EVs atv choose
S for charging, y(v, S) = 1, otherwise, y(v, S) = 0.

Boring time Costb . Since we cannot install unlimited number

of chargers in an EVC station, which means the total charging
capacity of a station is limited, queueing naturally happens for
all EVC stations. And long waiting time for available chargers
significantly increases the boredom of EV drivers [26, 28], which
produces the social cost. Besides, as we have already shown that
the charging power varies much from different types of plugs, the
total charging time is also considered into boring time. Thus, we
define the social cost caused by long boring time, denoted byCostb ,
as the sum of waiting time and the charging time.

For an EVC station S , to analyze thewaiting time and the charging
time at S , we first estimate the total number of EVs coming S for
charging within a unit time interval as the following formula,

D(S) =
∑
v ∈V

1

dist(v, S)
dvy(v, S), (4)
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which is a weighted sum over the charging demanddvy(v, S)where
the weight 1/dist(v, S) implies the attraction of S to EVs at location
τ (v). Note that, the attraction can be quantified by any decaying
function of dist(v, S) and here we adopt the inverse of dist(v, S).

Charging time. Note that, the total charging capacity as C(S) =∑k
i=1 x

(i)
S
pi , where pi is the power of charger with ith type plug.

Thus, the expected charging time of station S , here, can be calculated
as the inverse of the total charging capacity, that is, 1/C(S). Then,
we evaluate the total charging time among all the stations in a given
deployment plan P as:

charging time =
∑
S ∈P

D(S)

C(S)
=

∑
S ∈P

∑
v ∈V

1

C(S)dist(v, S)
dvy(v, S)

Waiting time. For the waiting time, we first model the waiting

time at an EVC station as an M/D/1 queue [6], where “M” means
the coming event of EV follows a Poisson process, “D” means the
service time (i.e., the charging time) is a deterministic function and
“1” stands for that there is one queue for a station. The expected
value of waiting time at station S is given by Pollaczek-Khintchine
formula [6] as follows,

W (S) =
ρSτS

2(1 − ρS )
, if ρS ≤ 1 (5)

where τS is the average charging time and ρS = θSτS , θS being the
EV arrival rate of EVC station S . Here, we estimate τS as 1/C(S)
and estimate θS as the summed charging demand within a circular
region, denoted by Rmax (S), which is centering at S .pos with radius
rmax , that is, ρS =

∑
τ (v)∈Rmax (S ) dv/C(S). Note that, ρS must be

less than 1, otherwise, the length of queue at station S will go to
infinity. Then, we can estimate the total waiting time at all stations
in a given plan P as follows,

waiting time =
∑
S ∈P

D(S)W (S) =
∑
S ∈P

∑
v ∈V

W (S)

dist(v, S)
dvy(v, S).

Thus, the total boring time, denoted by Costb , over the whole
society can be calculated as the sum of total waiting time and total
charging time, which is shown in Eq. (6),

Costb (P) = waiting time + charging time

=
∑
S ∈P

∑
v ∈V

dvy(v, S)

dist(v, S)
·

(
W (S) +

1

C(S)

)
.

(6)

Definition 7: Social Cost. Suppose that we are given a road
network G = (V ,E,τ ,δ ) and the charging demand dv for each
nodes in G, for an EVC deployment plan P , the total social cost of
P is defined as,
Cost (P ) = αCostt (P ) + (1 − α )Costb (P )

=
∑
S∈P

∑
v∈V

dvy(v, S )

(
αdist (v, S ) +

1 − α

dist (v, S )

(
W (S ) +

1

C(S )

))
where α is the parameter tuning the relative importance among
these two kinds of social cost.

2.3 Problem Definition

With all the concepts defined above, we can formulate our Social-
Aware Optimal Electric Vehicle Charger Deployment problem.

Definition 8: Social-AwareOptimal ElectricVehicleCharger

Deployment (SOCD). Given road networkG = (V ,E,τ ,δ ), charg-
ing demand {dv |v ∈ V }, and the total budget B for deploying EVC

stations, SOCD solves the optimization problem as follows,

max
P,y

Social = λBenefit − (1 − λ)Cost (7)

subject to: ∑
S ∈P

f (S) ≤ B (8a)∑
S ∈P

y(v, S) = 1 for ∀v ∈ V (8b)

k∑
i=1

x
(i)
S

≤ K for ∀S ∈ P (8c)∑
τ (v)∈Rmax (S ) dv

C(S)
≤ 1 for ∀S ∈ P (8d)

where λ is the parameter tuning the relative importance between
social benefit and social cost, f (S) is the installment fee of S which

is shown in Definition 3, x (i)
S

is the number of ith type of charger
at station S . Eq. (8a) is the constraint on total installment fee not
exceeding the expected budget B; Eq. (8b) requires that one node
with charging demand can only choose one station for charging;
Eq. (8c) gives a upper-bound K to the number of chargers an EVC
station can install; and Eq. (8d) is for avoid waiting queue at each
EVC station increasing to infinity.

Note that, similar to the well-known facility location problem
[12], the decision variables in our SOCD can be divided into two
sets, one is the optimal EVC station deployment plan P , and the
other is the demand assignment y representing the EVs’ choices of
EVC station at each location τ (v).

Hardness Analysis. Our SOCD problem is proved to be NP-
hard in Theorem 2.1 by using a reduction from the KNAPSACK
problem. Due to the space, we refer readers to our technical report
[20] for the detailed proof.

Theorem 2.1. (Hardness) The problem of Social-Aware Optimal

Electric Vehicle Charger Deployment (SOCD) is NP-hard.

Since SOCD is an NP-hard problem, it is impossible to obtain the
optimal result in polynomial time unleass P=NP. Besides, designing
heuristics or greedy algorithms for SOCD also differs from the
classical combinatorial optimization problems since in SOCD, we
not only determine where to place an EVC station, but also should
give the numbers of each type of chargers. Besides, our SOCD
problem cannot be solved by common-used LP solvers such as
LINDO since the optimization objective and the constraints such
as the queuing constraint in Eq. (8d) are complex and non-linear.

3 METHODOLOGY

In this section, we propose several efficient and effective heuristics
to solve the problem. We introduce two algorithms for solving
SOCD, Bounding & Optimizing Greedy Deployment and Region-

Partitioning-Based Group Deployment. Before formally introducing
the algorithms, we first discuss how to assign charging demand
given the incumbent EVC station deployment plan P . Note that, for
a given EVC deployment plan P , to evaluate its total social influence
defined in Eq. (7), it is necessary to determine which station will be
chosen by an EV for charging (namely, y(v, S)). Since retrieving the
optimal solution to y(v, S) is intractable, we first give an heuristic
algorithm solving the problem called EVC Station Seeking Algorithm.
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3.1 EVC Station Seeking Algorithm

As shown the Definition 8, SOCD determines not only charger
deployment plan P , but also the optimal charging demand assign-
ment y(v, S) for ∀v ∈ V and ∀S ∈ P . The first problem we want
to answer is that, given an existing EVC station deployment plan
P , how the nodes in the road network with charging demand will
choose EVC stations, that is, evaluating y(v, S) forv ∈ V , S ∈ P . We
first re-investigate some similar problems. In the greedy algorithm
for facility location problem in [12], nodes with demand always
choose their nearest facility in each greedy iteration. However, in
our SOCD problem, we consider multiple social influence factors
and travel cost is only one of them. Besides, some other works like
[14, 19] formulate this procedure as a bi-level linear programming.
They regard demand assignment as a sub-problem and iteratively
invoke LP solver to solve it. Unfortunately, we cannot borrow this
idea either because as we show in Definition 8, the formation of
social influence is very complex and decision variables are coupled
together, which prevents us from using all currents LP solvers.

S1

S2
r1 r2EV1

EV2

EV3

Seeking

Charging

Driving

Station

Figure 3: An example of EVC station seeking.

Now, we formally introduce the sub-problem, called Station Seek-
ing, of SOCD. Given the current deployment plan P , since Benefit, in
the SOCD optimization objective shown in Eq. (7), is fixed when P
is fixed, maximizing Social is equivalent to minimizing Cost . Thus,
we have the following definition of Station Seeking problem.

Definition 9: Station Seeking. Given current deployment plan
P , the Station Seeking problem is formulated as follows,

min
y

Cost =
∑
S∈P

∑
v∈V

dvy(v, S )

(
αdist (v, S ) +

1 − α

dist (v, S )

(
W (S ) +

1

C(S )

))
subject to: ∑

S∈P

y(v, S ) = 1, for ∀v ∈ V .

To solve this problem, we propose a StationSeeking algorithm,
which is a greedy algorithm but yields the optimal solution. The
algorithm is shown in Algorithm 1, in each iteration, for a node in
road network v , we calculate the assignment cost for v choosing
station S , denoted by Costa (v, S), as:

Costa (v, S ) = dv

(
αdist (v, S ) +

1 − α

dist (v, S )

(
W (S ) +

1

C(S )

))
, (9)

andwe assignv to station S (i.e., lety(v, S) = 1) such thatCosta (v, S)
is minimized.

We give an example in Figure 3. There are two EVC stations in
the example, S1 and S2, suppose that EV1, EV2 and EV3 are three EVs
that need to be refilled soon. By following the greedy EVC Station
Seeking manner, EV1, EV2 and EV3 are assigned to S1, S2 and S1
respectively. The following theorem indicates that such greedy
algorithm yields the optimal solution for Station Seeking problem.

Theorem 3.1. The greedy algorithm shown in Algorithm 1 yields

the optimal solution for the Station Seeking problem.

Algorithm 1: StationSeeking

Input: EVC station deployment plan P , road network G = (V , E, τ , δ ),
charging demand {dv |v ∈ V }

Output: demand assignment {y(v, S ) |y(v, S ) ∈ {0, 1}, v ∈ V , S ∈ P }
1 for v in V do
2 calculate Costa (v, S ) as Eq. (9) for all S ∈ P ;
3 S ′ ← argminS∈P Costa (v, S );
4 y(v, S ′) ← 1;

5 return {y(v, S ) |y(v, S ) ∈ {0, 1}, v ∈ V , S ∈ P };

3.2 Bounding & Optimizing Based Greedy

In the following, we introduce an algorithm based on greedily
selecting a location to build an EVC station such that the gain
of Social is maximized in each step. However, as mentioned in
Section 2.3, SOCD problem cannot borrow ideas from common
combinatorial optimization problems since we aim to decide both
where to deploy EVC stations and how many chargers are needed.
Thus, very different from the common greedy algorithm design
pattern, which is to make the locally optimal choice at each stage,
we devise a strategy called Bounding & Optimizing Based Greedy.

The basic idea is that, in the Bounding Stage, we evaluate the
upper-bound of the gain to Social for setting one EVC station Si at
every possible location τ (vi ) and pick the location with the highest
upper-bound to deploy an EVC station in this step; then, in the
Optimizing Stage, assuming that the location of station has been
decided in the Bounding Stage, we determine the numbers of each
types of chargers to try to reach the upper-bound; and then, we
repeat the above greedy picking procedure until there is no budget
left to build a new EVC station.

Algorithm 2: Bounding&Optimizing

Input: road network G = (V , E, τ , δ ), charging demand {dv |v ∈ V }
Output: an EVC station deployment plan P

1 P ← ϕ ;
2 B ← initial total budget;
3 while B>0 do

/* Bounding Stage */

4 calculate social efficiency upper-bound ub_д(v) for each node v in G ;
5 pick location τ (vi ) with highest ub_д(v) to build an EVC station Si ;
6 invoke StationSeeking (Algorithm 1) to update demand assignment y(v, S );

/* Optimizing Stage */

7 invoke KnapsackBasedOpt (Algorithm 3) to get {x (1)
Si
, x

(2)
Si
, · · · , x

(k )
Si

};

8 Si .pos ← τ (vi ); Si .x ← {x
(1)
Si
, x

(2)
Si
, · · · , x

(k )
Si

};

9 P ← P ∪ {Si };
10 B ← B − f (Si );

11 return P ;

Framework. The framework of Bounding & Optimizing Based

Greedy Deployment is shown in Algorithm 2. We start from an
empty EVC station deployment plan P and B, the initial total budget.
The Bounding Stage are shown in lines 4-5, where we greedily select
the location to place an EVC station maximizing the upper-bound
to the gain of Social . Denoting the station newly placed as Si , line 6
updates the demand assignment y(v, S). Then, in line 7, we invoke
the Knapsack Based Optimizing in Algorithm 3 to determine the
number of each type of chargers at station Si . Then, Si will be
inserted into current plan P and remained B will be updated. The
algorithm will terminate if budget is exhausted. In the sequel, we
will introduce the Bounding Stage and Optimizing Stage in details.
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Bounding Stage.Given the incumbent EVC station deployment

plan P , let Social(P) be the total social influence of P , which is
calculated by Eq. (7). For deploying an EVC station Si at location
Si .pos ∈ {τ (v)|v ∈ V }, we define its social efficiency (i.e., the gain
of social value per budget cost), denoted by д(Si ), as follows,

д(Si ) =
Social(P ∪ {Si }) − Social(P)

f (Si )
, (10)

where f (Si ) is the installment fee of station Si , which is defined in
Definition 3. Then, we evaluate the upper-bound of social efficiency
when we place station Si at location τ (v), which is denoted by
ub_д(v). Note that, ub_д(v) indicates the potential social efficiency
of setting Si at τ (v). ub_д(v) is given by Lemma 3.2.

Lemma 3.2. (Upper-Bound) Suppose that we are deploying an EVC

station Si at location Si .pos = τ (v), the upper-bound of Si ’s social
efficiency д(Si ), denoted by ub_д(v), is given by

д(Si ) ≤ ub_д(v) =
λΔBene f it∗

estate_price(Si )
, (11)

where ΔBene f it∗ is:

ΔBenefit ≤
2

1 + exp{−w(Si .pos)[I
∗
1 (Si )]}

− 1, (12)

where I∗1 (Si ) is the number of nodes in the road network covered by

the circular region centering at Si .pos with radius rmax .

Optimizing Stage. Suppose that we have decided to deploy an

EVC station Si at location τ (v), then, we discuss howmany chargers
of different types are needed to increase the social efficiency д(Si )
to the greatest extent. The problem can be formulated as:

minд(Si ) =
Social (P ∪ {Si }) − Social (P )

f (Si )

=
λBenefit(P ∪ {Si }) − (1 − λ)Cost (P ∪ {Si }) − Social (P )

estate_pr ice(Si ) +
∑k
i=1 fix

(i )
Si

(13)

such that, ∑k

i=1
x
(i )
Si

≤ K (14a)

estate_pr ice +
∑k

i=1
x
(i )
Si
fi ≤ B (14b)∑k

i=1
x
(i )
Si
pi ≥

∑
τ (v )∈Rmax (Si )

dv (14c)

Note that, the optimization goal shown in Eq. (13) is fractional. Ac-
cording to [11], the linear fractional programming (LFP) problems
are usually transformed to standard linear programming to use LP
solver. But unfortunately, Eq. (13) is non-linear fraction due to the
term Benefit, which currently has no effective solution. Thus, we
propose a heuristic algorithm called KnapsackBasedOpt to solve it.

The motivation of KnapsackBasedOpt is that, we start from an ini-

tial deployment {x (1)
Si
,x

(2)
Si
, · · · ,x

(k )
Si

} and repeatedly add chargers

with ith type plug such that the social efficiency д(Si ) is maximized.

To do that, we first generate a feasible solution {x
(1)
Si
,x

(2)
Si
, · · · ,x

(k )
Si

}

such that the total installment fee is minimized satisfying the total
charging capacity constraint in Eq. (14c). We describe this problem,
which is an unbounded knapsack problem (UKP), as follows,

min
∑k

i=1
x
(i)
Si

fi

s.t.
∑k

i=1
x
(i)
Si
pi ≥

∑
τ (v)∈Rmax (Si )

dv

(15)

Algorithm 3: KnapsackBasedOpt

Input: road network G = (V , E, τ , δ ), charging demand {dv |v ∈ V }, station
selected in Bounding Stage Si , current deployment plan P

Output: numbers of each type of chargers {x (1)
Si
, x

(2)
Si
, · · · x

(k )
Si

}

/* get initial solution via unbounded knapsack */

1 using dynamic programming to solve the unbounded knapsack problem shown
in Eq. (15) and denote the result as x [1 · · · k ];

/* start adding chargers */

2 while
∑k
i=1 x [i] ≤ K do

3 G(j) ← difference of д(Si ) after and before adding one jth type charger;
4 j∗ ← argmaxj G(j);

5 if budget B is enough for adding j∗th charger and G(j∗) ≥ 0 then
6 x [j∗] ← x [j∗] + 1;

7 else return Fail ;

8 return x [1], x [2], · · · , x [k ];

The pseudo code of KnapsackBasedOpt is shown in Algorithm
3. Line 1 solves the knapsack problem in Eq. (15) to get an initial
feasible solution. Line 3 defines a valueG(j) to denote the difference
of social efficiency д(j) after and before increasing one charger with
jth type plug at station Si . In line 4, we pick the j∗th type charger
such that it can increaseG(j) to the greatest extent. Lines 5-8 further
determines whether we can add one j∗. If current budget is enough
for deployment of one more charger with j∗th type plug and there
is positive gain of д(Si ) if adding j∗th charger (i.e., G(j∗) > 0), we
add 1 to x[j∗]; otherwise, the algorithm terminates. Note that, there
are totally three stop conditions of KnapsackBasedOpt algorithm,
and when we invoke it in our Bounding&Optimizing framework,
we should check which reason leading to termination of Knap-
sackBasedOpt. If total budget B is exhausted, the whole loop in
Bounding&Optimizing terminates; whereas, if the other two stop
conditions are triggered, we only break KnapsackBasedOpt and
continue to select another site to build an EVC station in Bound-

ing&Optimizing.
Complexity Analysis. We analyze the worst case time com-

plexity of our Bounding&Optimizing algorithm as follows. The
worst run time corresponds to the case that initial total budget is
very large, which means the algorithm will terminate after travers-
ing all the possible locations (namely,O(|V |) nodes in road network)
to build an EVC station. The Bounding Stage, which is shown in
lines 4-5 of Algorithm 2, takes time O(|V |) since we need to evalu-
ate all the social efficiency. After deciding where to place an EVC
station, in the Optimizing Stage, solving the unbounded knapsack
problem via dynamic programming takes timeO(KD∗), where K is
the upper-bound of total number of chargers at one station and D∗

is the total demand within a circular region centering at a station
with radius rmax . Note that K and D∗ are constant, which means
line 7 takes time O(1). Besides, lines 8-10 take time O(1). Thus, the
time complexity of the worst case is O(|V |2).

3.3 Region Partition Based Algorithm

Although our Bounding&Optimizing framework shown in Algo-
rithm 2 can return an EVC deployment plan with high Social value,
the time complexity,O(|V |2), is still high. The reason is that, in each
iteration, such a greedy algorithm suffers from |V | times compar-
isons in lines 4-5 in Algorithm 2. To reduce the total time complexity,
an intuitive way is to partition the road network intom sub-regions
and independently conduct the Bounding&Optimizing framework
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within each sub-region. Finally, we integrate all the results on each
sub-region to get an EVC station deployment plan.

Figure 4: Illustration of Voronoi-based region partition.

We use Voronoi diagram [3] to partition the road network. Specif-
ically, we selectm major nodes (e.g., center points in administrative
districts among a city) in road networkG with each corresponding
to one Voronoi cell. The distance from any location in a Voronoi cell
to the corresponding seed is less than that to any other seed. Thus,
we can partition the original road networks into several sub-regions
represented by different Voronoi cells. An example of Voronoi dia-
gram based region partition is shown in Figure 4 by using Shanghai
road network, where blue markers are seeds of Voronoi cells.

The pseudo code of our region partition based algorithm is pre-
sented in Algorithm 4. Line 1 partitions the input road network
intom sub-regions based on the selectedm seeds {S1, S2, · · · , Sm }.
Lines 2-4 are initialization steps, where line 3 sets the total bud-
get of each sub-region as the total budget B divided by m and
line 4 initializes the EVC station deployment plans in each sub-
region as empty sets. Then, for each sub-regionGi , we conduct the
Boundinд&Optimizinд in Algorithm 2 to get regional deployment
plan Pi and then update the remained budget Bi . After getting all
regional plans, we evaluate the total remained budget (i.e.,

∑m
i=1 Bi )

which is used for deploying more extra stations on the whole road
networkG , whose corresponding deployment plan is denoted by P ′.
Finally, we return the whole deployment plan P , which is the union
of all regional plans P1, · · · , Pm and the plan P ′ which utilizes the
total remained money.

Algorithm 4: RegionPartition

Input: road network: G = (V , E, τ , δ ), set ofm seeds of Voronoi diagram:
{S1, S2, · · · , Sm }, charging demand {dv |v ∈ V }

Output: an EVC station deployment plan P
/* Divide original region into m sub-regions */

1 using Voronoi diagram to partition the road network G according to seeds
{S1, · · · , Sm } and let G1, · · · , Gm be them sub-regions after partitioning;

/* Initialization */

2 for i = 1 tom do
3 Bi ← B/m;
4 Pi ← ϕ ;

/* place stations in each sub-region */

5 for i = 1 tom do
6 invoke Bounding&Optimizing framework with total budget Bi to determine

EVC deployment plan Pi over sub-region Gi ;
7 update the remained budget Bi ;

8 use total remained budget
∑m
i=1 Bi to place extra stations among road network

G according to the same greedy algorithm and denote the result as P ′;
9 return P1 ∪ · · · ∪ Pm ∪ P ′;

Time complexity. For Algorithm 4, given m Voronoi seeds
{S1, S2, · · · , Sm }, line 1 partitions the whole space into m parts
within timeO(m logm) by using Fortune’s algorithm [9]. Denote the
number of nodes in ith sub-region as |Vi |. Then, lines 6 takes time
O(

∑m
i=1 |Vi |

2). Suppose that in the partition step, we evenly divide
the whole region, that is to say, |V1 | = |V2 | = · · · = |Vm | = |V |/m.
Thus, the run time of lines 5-7 is O(

∑m
i=1 |Vi |

2) = O(|V |2/m). For
line 8, the time complexity is influenced by the remained total
budget and the number of nodes without placing any charger. Note
that, in real applications, the remained budget should be so small
that we cannot place many extra stations. Thus, the total time
complexity of our region partition based algorithm is O(|V |2/m).

Note that, the total number of sub-regionsm makes a trade-off
between total Social value and run time of algorithm. Largem leads
to faster termination of the RegionPartition algorithm with some
loss of the Social value. This is natural to understand since we
conduct greedy station placing over each partitioned sub-region
independently, that is to say, interaction between different sub-
regions is ignored.

3.4 Extend to Incremental Case

Above we have discussed the solutions to the SOCD problem on
a real road network, however, there exists another kind of EVC
station deployment problem where the budget will not be totally
disbursed at initial time and extra more budget will be available
some day in the future. We call such special case the Incremental

SOCD problem. To avoid ambiguity, we call the original SOCD prob-
lem “Static SOCD” and without specific clarification, “SOCD” only
means “Static SOCD” but not “Incremental SOCD”. The following
is an example of such an application scenario.

Example: Incremental SOCD. Shanghai government is putting

efforts on promoting the development of electric vehicles and they

have already granted funding to place some EVC stations. However,

with the increasing number of EVs, the current EVC stations cannot

provide enough charging service, which leads to the negative social

influence. Thus, after careful investigation, Shanghai government

decides to give more extra budget on deploying more EVC stations.

The incremental SOCD problem is that, based on the extra budget and

the previous EVC station deployment plan, how to place more EVC

stations such that the total Social value is maximized?

For the incremental SOCD problem, [18] investigated a relevant
problem, that is, determine how to arrange the chargers based on a
historical deployment plan and a number K which is the number
of extra EVC stations we want to install. Our incremental SOCD
problem is different from that of [18] since we add constraint on
total budget instead of number of EVC stations. And comparing
with [18], the most distinguished point of our SOCD problem under
incremental setting is that, again, we maximize the total influence
from a whole social perspective.

Fortunately, the algorithms we proposed, Bounding&Optimizing

in Algorithm 2 and RegionPartition in Algorithm 4, can both be ex-
tended to the incremental case naturally since these two algorithms
are based on greedy strategy where in each time we pick one best
location to build a station. Due to the limit of page, we omit some
details of the extension. The readers can find the detailed incremen-
tal SOCD algorithms and corresponding experimental results in
our technical report [20].
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4 EXPERIMENTAL STUDY

In this section, we first introduce the experiment setup and then
present our experimental results.

4.1 Experiment Setup

Data preparation. We conduct all the experiments on Shanghai

road network data2, which contains 20,337 nodes and 106,870 edges.
For convenience, we pre-calculate all the pairwise shortest distances
(i.e., dist(u,v) for any u,v ∈ V ) via a distributed Dijkstra’s algo-
rithm. To estimate the rural degree which is used to evaluate social
benefit in Eq. (2), we select 17 major center points, denoted by
p1,p2, · · · ,p17, from 17 administrative districts of Shanghai. Then,
for any node v in the road network, we estimate the rural degree
of this node by,

w(τ (v)) = д( min
i=1· · ·17

| |τ (v) − pi | |
2), (16)

where | | · | | is 2-norm and д(·) is a function used for normalization.
To calculate Benefit andCost , we collect massive trajectory data3

to estimate the charging demand dv of all nodes in road network.
Different from some works like [18, 19] using taxi trajectories, we
collect trajectories of various types of vehicles which can better
simulate the real traffic condition and demand of charging. We
assume that the charging demand dv is proportion to the volume of
traffic flow nearby location τ (v). First, for each node v , we retrieve
trajectories which have location records whose distance from τ (v)
is less than 1 km. Note that EV drivers will not travel too far to
seek a station for charging and we assume 1 km is an appropriate
value. Then, for the retrieved trajectories, assuming that tj (v) is

the time stamp of jth trajectory travelling to somewhere nearby
τ (v), we set a time window whose length is 5 min to filter out all
the trajectories with tj (v) out of the window. We select 5 min as
the length of time window since the GPS sampling interval in the
raw trajectory data is 4-6 min [5, 17, 24, 29]. To smooth the result,
we set 10 different time windows, count the number and regard the
average number as the estimation of dv .

Besides, for the estate_price at each location τ (v), here, we use a
Gaussian distribution to generate samples. Specifically, we assume
that estate_price ∼ N(μ,σ 2)where μ is the expected estate price of
Shanghai and σ 2 is fixed to 400,000 which is achieved by analyzing
Shanghai estate price data. Note that, in real application, decision
makers can manually modify the distribution of estate price to
adapt to different real world applications.

SOCD Approaches and Baseline.We implement the twomain

algorithms for solving SOCD problem, one is Bounding&Optimizing

in Algorithm 2 and another is RegionPartition in Algorithm 4, which
are denoted by B&O and RP respectively for brevity. Specifically,
in algorithm RP, to partition the whole region via Voronoi diagram,
we select seeds as p1,p2, · · · ,p17, which are the major center points
in 17 districts of Shanghai used for estimating the rural degree. The
partition results are already shown in Figure 4.

For the baseline algorithm, as our work is the first one taking
comprehensive social influence into consideration, and the opti-
mization goal is too complex to use existing LP solvers, here, we

2Download from https://figshare.com/articles/Urban_Road_Network_Data.
3All the trajectory data is provided by SAIC Motor Co. Ltd.

Algorithm 5: baseline

Input: road network: G = (V , E, τ , δ ), charging demand: {dv |v ∈ V }
Output: an EVC station deployment plan P

1 P ← ϕ ;
2 B ← initial total budget;
3 sort all the nodes v ∈ V by dv in descending order;
4 while B > 0 do
5 pop v with highest dv from V ;
6 S .pos ← τ (v);
7 start adding chargers in S from the chargers with highest power to lower

ones if budget is sufficient;
8 P ← P ∪ {S } update remained budget B ;

9 return P ;

propose a demand-first greedy baseline algorithm (denoted by “base-
line” in short) shown in Algorithm 5. Since in the worst case, the
baseline algorithm scans all the nodes to set EVC stations, which
leads to highest running timeO(|V |). However, intuitively, it is easy
to see that baseline algorithm will exhaust all the budget much
faster than B&O and RP, which produces low Social value since we
lose the chance to investigate many possible locations to build an
EVC station in very early stage.

Parameter Setting. There are mainly 6 parameters in our so-

lution: 1) λ: the relative importance between Benefit and Social ; 2)
α : the relative importance between Costt and Costb ; 3) B: initial
total budget; 4) K : the maximal number of chargers that an EVC
station can install; 5) rmax : the maximal radius of influence region;
6) μ: expected value of Shanghai real estate price. The parameters
settings are shown in Table 3. Each time, we vary one parameter,
while other parameters are set to the underlined default values.

Table 3: Parameter settings.

Parameter Value

λ [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
α [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
B [30, 35, 40, 45, 40] (million)
K [2, 4, 6, 8, 10]

rmax [500, 1000, 1500, 2000, 2500]
μ [1.2, 1.3, 1.4, 1.5, 1.6] (million)

Implementation. All the algorithms were implemented in C++

and all the experiments were conducted on a server with Intel(R)
Xeon(R) CPU E5-2650 @ 2.60GHz and 32GB main memory. To
demonstrate the efficiency and effectiveness, we repeat each case
for 30 times and report the average result about the CPU time and
the Social value of algorithms introduced in Section 3.

4.2 Effectiveness Demonstration

As proved in Section 2.3, exact solution to the SOCD problem is
extremely costly due to the NP-hardness. Thus, it is impossible
to compare our algorithms with the optimal results on large-scale
data. To demonstrate the effectiveness of our proposed solutions, we
compare the results achieved by our solutions to SOCD (i.e., B&O
and RP) with the optimal one (OPT) which is calculated via brute
enumeration on a small-scale SOCD instance with 20 major nodes
sampled from the real road network. The results are shown in Table
4. The optimal Social value is 0.345253 and our B&O algorithm can
achieve 0.322983, which is very close to the optimal. In addition,
the Social value of the RP algorithm is 0.157776, which is nearly
half of that of OPT. Note that, since there are only 20 nodes in the
small-scale SOCD instance, the region partition based approach RP
cannot achieve relative good result since it is very hard to find a
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reasonable cut on the small road network. Particularly, B&O and
RP run nearly 105 times faster than the brute enumeration based
algorithm. The seed up ratio of our heuristics can become much
higher than 105 when the scale increases.

Table 4: Results on a small-scale SOCD instance.

Algorithms Social value CPU time

B&O 0.322983 <0.001
RP 0.157776 <0.001
OPT 0.345253 73.930

4.3 Experimental Result of Static SOCD

In the following, we report the experimental results of the static
case on real datasets, as shown in Figure 5. Due to space limit, please
refer to our technical report [20] for the results of the incremental
case.

Result Overview. Figures 5a, 5b, 5c, 5d, 5e and 5f report the
Social value of different parameters shown in Table 3; on the other
hand, Figures 5g, 5h, 5i, 5j, 5k and 5l report the CPU time under
different parameter settings. We can see that, B&O always has the
highest Social comparing with baseline and RP. However, B&O
takes much more time than the other two algorithms, where the
run time of RP is very close to that of baseline, which is the most
efficient algorithm. The reason is that, RP is based on sub-region
partition in which we regard each sub-region as an independent
part and conduct greedy placing strategy.

Effect of B. B is the initial total budget which are granted
for building EVC stations among a city. Figures 5c and 5i show
the Social value and CPU time of three algorithms by varying B =
30, 35, 40, 45, 40 (million RMB). With the increase of B, Social values
of all the three algorithms increase. The reason is natural, more
initial budget means more chargers, which leads to the increase of
social Benefit and the decrease of bothCostt andCostb . Besides, for
the running time, we can see in Figure 5i, the CPU time of algorithm
B&O increases when B increases. According to the complexity
analysis in Section 3.2, the more initial budget, the more iterations
are needed before the termination of B&O. In the worst case, if
B → +∞, the time complexity will be |V |2 where |V | is the total
number of nodes in the road network.

Effect of K . K denotes the maximal number of chargers can
be installed per station. Figures 5d and 5j report the results by
setting K = [2, 4, 6, 8, 10]. Social value of RP and baseline decreases
whenK increases; whereas that of B&O remains stable even slightly
increases. We give the reasons as follows. For baseline, higher value
of K means that we can set more chargers at a single EVC station,
indirectly leading to faster spending of budget, which is one of the
factors leading to low value of Social according to the analysis in
the discussion of baseline algorithm. For RP, since each sub-region
is independent with each other, it is easy to fall into local optimal
and not taking good use of K . However, B&O does not suffer from
this point which makes it robust to K . Besides, for the run time, it
remains stable for all of three algorithms sinceK is not the influence
factor of time complexity.

Effect of rmax . We also test the influence of the maximal radius
of influence region rmax and the results are presented in Figures
5e and 5k where rmax is set to [500, 1000, 1500, 2000, 2500]. For the
three algorithms, Social increases when rmax increases. The reason
is straightforward, there would be more nodes covered by influence
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Figure 5: Results of static SOCD w.r.t. λ, α , B, K , rmax and μ.
region of a newly deployed EVC station when rmax increases. As
for the run time, it is similar to result parameter K , total run time
of all the three algorithms remains stable w.r.t. rmax since rmax is
not influential to time either.

Effect of μ. In Figures 5f and 5l, we experimentally study the
effect of the expectation of estate price μ, which we have discussed
above in the data preparation part. We find that, when μ increases,
Social value of three algorithms, baseline, B&O and RP, decreases.
That is because, high expected estate price will lead to large propor-
tion of initial budget is spent for buying estate, instead of installing
chargers, which will decrease the Benefit and increase theCost , and
finally decrease the Social value. Besides, CPU time of B&O also
decreases as μ decreases since high estate price will increase the
total budget cost for setting up one EVC station, which will use up
all the initial budget very soon to end the iteration.

In summary, on the real road network data, B&O can always
achieve the highest overall Social value, but it has the highest run
time among all the approaches. The baseline which is based on
demand-first greedy strategy is always the fastest one but suffers
from relative low Social value. The region partition based algorithm
RP achieves a good compromise between run time and Social value;
namely, RP can reach high Social value within time close to baseline.

5 RELATEDWORKS

In the following, we review related works from two aspects: facility
location problem and EVC related optimization problem.

Facility Location Problem. Facility location (FL) problem is
one of the fundamental theoretical problems which has been inves-
tigated in [7, 12, 16]. Given a set of candidate facilities’ locations,
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such as warehouses and gas stations, and a set of nodes with de-
mand that can be satisfied by traveling to some facility, a general
facility location problem is to decide the location of facilities, to
minimize the total travel cost from nodes with demand to their
selected facilities. Specifically, [12, 16] studied the case whose dis-
tances between facilities and nodes are in a metrics space, which is
called “metric facility location” (MFL) problem. [12] pointed that it
is hard to approximate within any constant ratio less than 1.463 and
[16] achieves the current best ratio, which is 1.488. However, as we
have discussed above, our SOCD problem is much more complex
than FL both from optimization objective and constraints, which
prevents us using current solutions to facility location problem.

EVC Related Optimization Problem. As we have mentioned
in the Introduction, most current literatures about EVC related
optimizing problem focus on partitioned regions of a city [10, 18, 27].
These works return the deployment of EVC stations within a region
or a cell, instead of some concrete location. Note that, the meaning
of “partitioned region” is totally different from what we use in
the algorithm Region Partition Based Deployment in Section 3.3.
Specifically, [10] estimates the optimal charger distribution within
a region such that the total EV drivers’ discomfort can be minimized.
[18] considers how to place extra K EVC stations based on a given
EVC distribution. Another perspective provided by [27] is using
game theory to model the interaction between EVC deployment and
EV’s selection to EVC station. Other work [8] studies the charger
planning problem to determine the amount of chargers for each
EVC station. Note that, unfortunately, we cannot borrow ideas from
these EVC related works due to the following reasons. First, we
focus on deciding the specific locations on road network where the
EVC stations should be installed. Second, we studies a more realistic
scenario, where a station might have multiple types of charging
plugs with different charging power and price. Third, we define
the optimization objective as social influence, which is much more
complex than the pioneer sutides. Besides, we also consider more
practical issues, e.g., the incremental SOCD problem.

6 CONCLUSION

With the continuously increasing charging demand of electric ve-
hicles, how to place EV chargers (EVC), within a city, to achieve
positive social influence is becoming urgent challenges. In this
paper, we propose a new EVC station placing problem called Social-
Aware Optimal Electric Vehicle Charger Deployment (SOCD) which
considers multiple complex social influence of EVC arrangement.
Since SOCD problem is both NP-hard and hard to approximate
within any constant, we propose two efficient heuristic algorithms,
Bounding&Optimizing Based Greedy Deployment and Region Par-

tition Based Deployment. Finally, by conducting extensive experi-
ments on a real road network, we demonstrate both efficiency and
effectiveness of our proposed algorithms.
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